VIDYANIKETAN COACHING CLASSES, GHA	ANSAWANGI
Class:-10 th	Mark's:-25
Sub.:- Math-2	Time:- 1:30Hr
Q.1) Choose the correct alternative's for each of the following question's.	[2]
i) $\cos \Theta X \sec \Theta = \dots$	C
(A) 0 (B) 1 (C) 2 (D) $\sqrt{2}$	
(A)9 (B) -9 (C) 1 (D) -1	
Q.2) Answer the following question's. [Any-3]	[6]
i) If Cosec $\Theta = \frac{65}{63}$, then find the value of Sin Θ and Cos Θ .	
ii) Find the value of $Sin^2 20 + Sin^2 70$.	
iii) If $\cos \theta = \frac{3}{5}$, where θ is an acute angle, find the value of $\sin \theta$.	
iv) An observer at a distance of 10 m from a tree looks at the top of the tree, the angle	of elevation is 60°.
What is the height of the tree? ($\sqrt{3} = 1.73$)	, ,
v) If $\cos \theta + \frac{1}{\cos \theta} = 4$, then prove that $\cos^2 \theta + \frac{1}{\cos^2 \theta} = 14$	
Q.3) Answer the following question's. [Any-3]	[9]
i) Prove: $\frac{\sin \theta}{1 - \cos \theta} = \operatorname{Cosec} \theta + \operatorname{Cot} \theta.$	
ii) Prove: $Sin^{6}\Theta + Cos^{6}\Theta = 1 - 3Sin^{2}\Theta \cdot Cos^{2}\Theta$	
iii) From the top of the light house, an observer looks at a ship and finds the angle of d	lepression to be 30°.
If the height of the light-house is 100 meters, then find how far the ship is from the	e light-house.
iv) If Sin $\Theta = \frac{5}{13}$, find the values of other trigonometric ratios using identities.	
v) Prove that: Sec θ + tan $\theta = \frac{\cos \theta}{1 - \sin \theta}$	
Q.4) Solve the following question. [Any-2]	[8]
i) Prove that: $\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1} = \frac{1}{\sec \theta - \tan \theta}$	
ii) While landing at an airport, a pilot made an angle of depression of 20°. Average spe	ed of the plane
was 200km/hr. The plane reached the ground after 54 seconds. Find the height at v	which the plane was
when it started landing. (sin $20^\circ = 0.342$)	
iii) Prove that: $Sec^{4}A(1 - Sin^{4}A) - 2 \tan^{2}A = 1$	
Best of Luck	

For more paper's visit:- <u>www.vidyaniketan.org.in</u>