BOARD QUESTION PAPER: MARCH 2022

Mathematics - II

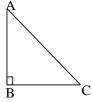
Time: 2 Hours Max. Marks: 40

Note:

- All questions are compulsory. i.
- Use of calculator is not allowed. ii.
- The numbers to the right of the questions indicate full marks. iii.
- In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit. iv.
- For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written v. as an answer.
- vi. Draw proper figures for answers wherever necessary.
- vii. The marks of construction should be clear. Do not erase them.
- Diagram is essential for writing the proof of the theorem. viii.

Q.1. (A) For each of the following sub-questions four alternative answers are given. Choose the correct alternative and write its alphabet:

[4]


- If $\triangle ABC \sim \triangle DEF$ and $\angle A = 48^{\circ}$, then $\angle D =$ i. (A) 48°
 - (B) 83°
- (C) 49°
- (D) 132°
- AP is a tangent at A drawn to the circle with center O from an external point P. OP = 12 cm ii. and $\angle OPA = 30^{\circ}$, then the radius of a circle is
 - (A) 12 cm
- $6\sqrt{3}$ cm (B)
- 6 cm (C)
- $12\sqrt{3}$ cm (D)
- iii. Seg AB is parallel to X-axis and co-ordinates of the point A are (1, 3), then the co-ordinates of the point B can be
 - (A) (-3, 1)
- (5, 1)(B)
- (C) (3,0)
- (-5, 3)

- The value of $2\tan 45^{\circ} 2\sin 30^{\circ}$ is iv.
 - (A)
- (B)

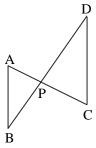
(B) Solve the following sub-questions:

In \triangle ABC, \angle ABC = 90°, \angle BAC = \angle BCA = 45°.

If AC = $9\sqrt{2}$, then find the value of AB.

- Chord AB and chord CD of a circle with centre O are congruent. If m(arc AB) =120°, then ii. find the m(arc CD).
- iii. Find the Y-co-ordinate of the centroid of a triangle whose vertices are (4, -3), (7, 5) and (-2, 1).
- If $\sin\theta = \cos\theta$, then what will be the measure of angle θ ? iv.

$\mathbf{Q.2.}$ (\mathbf{A}) Complete the following activities and rewrite it (any two):


In the above figure, seg AC and seg BD intersect each other in point P. If AP = BPthen complete the

following activity to prove $\triangle ABP \sim \triangle CDP$.

Activity: In \triangle APB and \triangle CDP

$$\frac{AP}{CP} = \frac{BP}{DP} \dots$$

- $\angle APB \equiv |$ vertically opposite angles
- ~∆CDP...... test of similarity.

[4]

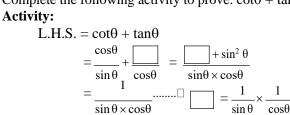
ii. In the above figure, $\Upsilon ABCD$ is a rectangle. If AB = 5, AC = 13, then complete the following activity to find BC.

 \triangle ABC is triangle.

:. By Pythagoras theorem

$$AB^2 + BC^2 = AC^2$$

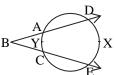
$$BC^2 =$$


D

C

[8]

[3]


iii. Complete the following activity to prove: $\cot \theta + \tan \theta = \csc \theta \times \sec \theta$

$$\therefore$$
 L.H.S. = R.H.S.

- (B) Solve the following sub-questions (any *four*):
- i. If $\triangle ABC \sim \triangle PQR$, AB : PQ = 4 : 5 and $A(\triangle PQR) = 125$ cm², then find $A(\triangle ABC)$.

ii.

In the above figure, m(arc DXE) = 105° , m(arc AYC) = 47° , then find the measure of \angle DBE.

- iii. Draw a circle of radius 3.2 cm and centre 'O'. Take any point P on it. Draw tangent to the circle through point P using the centre of the circle.
- iv. If $\sin \theta = \frac{11}{61}$, then find the value of $\cos \theta$ using trigonometric identity.
- v. In \triangle ABC, AB = 9 cm, BC = 40 cm, AC = 41 cm. State whether \triangle ABC is a right-angled triangle or not? Write reason.
- Q.3. (A) Complete the following activities and rewrite it (any one):

i.

In the above figure, chord PQ and chord RS intersect each other at point T. If $\angle STQ = 58^{\circ}$ and $\angle PSR = 24^{\circ}$, then complete the following activity to verify: $\angle STQ = \frac{1}{2}[m(arc\ PR) + m(arc\ SQ)]$

Activity:

In Δ PTS,

$$\angle SPQ = \angle STQ - \square$$

☐ Exterior angle theorem

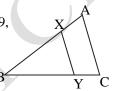
- \therefore \angle SPQ = 34°

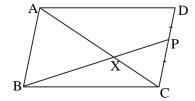
Similarly m(arc PR) = $2\angle PSR = \boxed{}$

 $\therefore \frac{1}{2} [m(\text{arc QS}) + m(\text{arc PR})] = \frac{1}{2} \times \text{ } = 58^{\circ}....(I)$

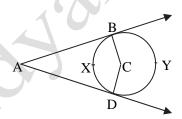
but
$$\angle STQ = 58^{\circ}$$
......(II) given

$$\therefore \frac{1}{2} [m(arc PR) + m(arc QS)] = \boxed{\angle} from (I) and (II)$$


Complete the following activity to find the co-ordinates of point P which divides seg AB in ii. the ratio 3:1 where A(4, -3) and B(8, 5).


By section formula,

$$x = \frac{\mathbf{m}x_2 + \mathbf{n}x_1}{\boxed{}}, \quad y = \frac{\boxed{}}{\mathbf{m} + \mathbf{n}}$$


- $x = \frac{3 \times 8 + 1 \times 4}{3 + 1}$, $y = \frac{3 \times 5 + 1 \times (-3)}{3 + 1}$
- $= \frac{\boxed{} + 4}{4} = \frac{\boxed{} 3}{4}$ $x = \boxed{} \therefore y = \boxed{}$
- Solve the following sub-questions (any two): **(B)**
- In $\triangle ABC$, seg XY || side AC. If 2AX = 3BX and XY = 9, i. then find the value of AC.

- ii. Prove that, "Opposite angles of cyclic quadrilateral are supplementary".
- $\triangle ABC \sim \triangle PQR$. In $\triangle ABC$, AB = 5.4 cm, BC = 4.2 cm, AC = 6.0 cm, AB : PQ = 3 : 2, then iii. construct $\triangle ABC$ and $\triangle PQR$
- Show that: $\frac{\tan A}{\left(1+\tan^2 A\right)^2} + \frac{\cot A}{\left(1+\cot^2 A\right)^2} = \sin A \times \cos A.$ iv.
- Q.4. Solve the following sub-questions (any two):
 - YABCD is a parallelogram. Point P is the midpoint of side CD. Seg BP intersects diagonal AC at point X, then prove that: 3AX = 2AC

ii.ii.

In the above figure, seg AB and seg AD are tangent segments drawn to a circle with centre C from exterior point A, then prove that: $\angle A = \frac{1}{2} [m(\text{arc BYD}) - m(\text{arc BXD})]$

- Find the co-ordinates of centroid of a triangle if points D(-7, 6), E(8, 5) and F(2,-2) are the iii. mid-points of the sides of that triangle.
- Q.5. Solve the following sub-questions (any *one*):
 - If a and b are natural numbers and a > b. If $(a^2 + b^2)$, $(a^2 b^2)$ and 2ab are the sides of the triangle, then prove that the triangle is right angled. Find out two Pythagorean triplets by taking suitable values of a and b.
 - Construct two concentric circles with centre O with radii 3 cm and 5 cm. Construct tangent to ii. a smaller circle from any point A on the larger circle. Measure and write the length of tangent segment. Calculate the length of tangent segment using Pythagoras theorem.

[3]

[6]

[8]